Local and Global Context for Supervised and Unsupervised Metonymy Resolution
نویسندگان
چکیده
Computational approaches to metonymy resolution have focused almost exclusively on the local context, especially the constraints placed on a potentially metonymic word by its grammatical collocates. We expand such approaches by taking into account the larger context. Our algorithm is tested on the data from the metonymy resolution task (Task 8) at SemEval 2007. The results show that incorporation of the global context can improve over the use of the local context alone, depending on the types of metonymies addressed. As a second contribution, we move towards unsupervised resolution of metonymies, made feasible by considering ontological relations as possible readings. We show that such an unsupervised approach delivers promising results: it beats the supervised most frequent sense baseline and performs close to a supervised approach using only standard lexico-syntactic features.
منابع مشابه
Combining Collocations, Lexical and Encyclopedic Knowledge for Metonymy Resolution
This paper presents a supervised method for resolving metonymies. We enhance a commonly used feature set with features extracted based on collocation information from corpora, generalized using lexical and encyclopedic knowledge to determine the preferred sense of the potentially metonymic word using methods from unsupervised word sense disambiguation. The methodology developed addresses one is...
متن کاملKnowledge-Lean Approaches to Metonymy Recognition
Current approaches to metonymy recognition are mainly supervised, relying heavily on the manual annotation of training and test data. This forms a considerable hindrance to their application on a wider scale. This dissertation therefore aims to relieve the knowledge acquisition bottleneck with respect to metonymy recognition by examining knowledge-lean approaches that reduce this need for human...
متن کاملMetonymy Resolution as a Classification Task
We reformulate metonymy resolution as a classification task. This is motivated by the regularity of metonymic readings and makes general classification and word sense disambiguation methods available for metonymy resolution. We then present a case study for location names, presenting both a corpus of location names annotated for metonymy as well as experiments with a supervised classification a...
متن کاملSyntactic Features and Word Similarity for Supervised Metonymy Resolution
We present a supervised machine learning algorithm for metonymy resolution, which exploits the similarity between examples of conventional metonymy. We show that syntactic head-modifier relations are a high precision feature for metonymy recognition but suffer from data sparseness. We partially overcome this problem by integrating a thesaurus and introducing simpler grammatical features, thereb...
متن کاملUnsupervised Coreference Resolution in a Nonparametric Bayesian Model
We present an unsupervised, nonparametric Bayesian approach to coreference resolution which models both global entity identity across a corpus as well as the sequential anaphoric structure within each document. While most existing coreference work is driven by pairwise decisions, our model is fully generative, producing each mention from a combination of global entity properties and local atten...
متن کامل